p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.64C24, C22.123C25, C24.143C23, C42.106C23, C22.122+ 1+4, D42⋊19C2, D4⋊5D4⋊29C2, (C4×D4)⋊58C22, C4⋊1D4⋊22C22, C4⋊D4⋊33C22, C4⋊C4.311C23, C23⋊3D4⋊11C2, (C2×C4).113C24, (C23×C4)⋊49C22, C22⋊Q8⋊42C22, C22≀C2⋊40C22, (C2×D4).315C23, C4.4D4⋊34C22, (C22×D4)⋊42C22, C22⋊C4.41C23, (C2×Q8).300C23, C42.C2⋊17C22, C22.32C24⋊12C2, C22.19C24⋊37C2, C22.54C24⋊4C2, C42⋊2C2⋊10C22, C42⋊C2⋊51C22, (C22×C4).383C23, C22.45C24⋊14C2, C2.52(C2×2+ 1+4), C2.44(C2.C25), C22.56C24⋊3C2, C22.D4⋊60C22, C22.34C24⋊17C2, C22.31C24⋊19C2, C22.47C24⋊27C2, C22.33C24⋊11C2, (C2×C4⋊D4)⋊72C2, (C2×C4⋊C4)⋊83C22, (C2×C4○D4)⋊42C22, (C2×C22⋊C4)⋊58C22, (C2×C22.D4)⋊65C2, SmallGroup(128,2266)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.123C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=g2=1, f2=a, ab=ba, dcd=gcg=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece=fcf-1=bc=cb, ede=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 1044 in 583 conjugacy classes, 382 normal (58 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C24, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊1D4, C23×C4, C22×D4, C22×D4, C2×C4○D4, C2×C4○D4, C2×C4⋊D4, C2×C22.D4, C22.19C24, C23⋊3D4, C23⋊3D4, C22.31C24, C22.32C24, C22.32C24, C22.33C24, C22.33C24, C22.34C24, D42, D4⋊5D4, C22.45C24, C22.47C24, C22.54C24, C22.56C24, C22.123C25
Quotients: C1, C2, C22, C23, C24, 2+ 1+4, C25, C2×2+ 1+4, C2.C25, C22.123C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 15)(2 16)(3 13)(4 14)(5 19)(6 20)(7 17)(8 18)(9 25)(10 26)(11 27)(12 28)(21 29)(22 30)(23 31)(24 32)
(1 25)(2 10)(3 27)(4 12)(5 24)(6 29)(7 22)(8 31)(9 15)(11 13)(14 28)(16 26)(17 30)(18 23)(19 32)(20 21)
(1 4)(2 3)(5 8)(6 7)(9 26)(10 25)(11 28)(12 27)(13 16)(14 15)(17 20)(18 19)(21 32)(22 31)(23 30)(24 29)
(1 23)(2 24)(3 21)(4 22)(5 26)(6 27)(7 28)(8 25)(9 18)(10 19)(11 20)(12 17)(13 29)(14 30)(15 31)(16 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 5)(2 6)(3 7)(4 8)(9 30)(10 31)(11 32)(12 29)(13 17)(14 18)(15 19)(16 20)(21 28)(22 25)(23 26)(24 27)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18)(9,25)(10,26)(11,27)(12,28)(21,29)(22,30)(23,31)(24,32), (1,25)(2,10)(3,27)(4,12)(5,24)(6,29)(7,22)(8,31)(9,15)(11,13)(14,28)(16,26)(17,30)(18,23)(19,32)(20,21), (1,4)(2,3)(5,8)(6,7)(9,26)(10,25)(11,28)(12,27)(13,16)(14,15)(17,20)(18,19)(21,32)(22,31)(23,30)(24,29), (1,23)(2,24)(3,21)(4,22)(5,26)(6,27)(7,28)(8,25)(9,18)(10,19)(11,20)(12,17)(13,29)(14,30)(15,31)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,5)(2,6)(3,7)(4,8)(9,30)(10,31)(11,32)(12,29)(13,17)(14,18)(15,19)(16,20)(21,28)(22,25)(23,26)(24,27)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18)(9,25)(10,26)(11,27)(12,28)(21,29)(22,30)(23,31)(24,32), (1,25)(2,10)(3,27)(4,12)(5,24)(6,29)(7,22)(8,31)(9,15)(11,13)(14,28)(16,26)(17,30)(18,23)(19,32)(20,21), (1,4)(2,3)(5,8)(6,7)(9,26)(10,25)(11,28)(12,27)(13,16)(14,15)(17,20)(18,19)(21,32)(22,31)(23,30)(24,29), (1,23)(2,24)(3,21)(4,22)(5,26)(6,27)(7,28)(8,25)(9,18)(10,19)(11,20)(12,17)(13,29)(14,30)(15,31)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,5)(2,6)(3,7)(4,8)(9,30)(10,31)(11,32)(12,29)(13,17)(14,18)(15,19)(16,20)(21,28)(22,25)(23,26)(24,27) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,15),(2,16),(3,13),(4,14),(5,19),(6,20),(7,17),(8,18),(9,25),(10,26),(11,27),(12,28),(21,29),(22,30),(23,31),(24,32)], [(1,25),(2,10),(3,27),(4,12),(5,24),(6,29),(7,22),(8,31),(9,15),(11,13),(14,28),(16,26),(17,30),(18,23),(19,32),(20,21)], [(1,4),(2,3),(5,8),(6,7),(9,26),(10,25),(11,28),(12,27),(13,16),(14,15),(17,20),(18,19),(21,32),(22,31),(23,30),(24,29)], [(1,23),(2,24),(3,21),(4,22),(5,26),(6,27),(7,28),(8,25),(9,18),(10,19),(11,20),(12,17),(13,29),(14,30),(15,31),(16,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,5),(2,6),(3,7),(4,8),(9,30),(10,31),(11,32),(12,29),(13,17),(14,18),(15,19),(16,20),(21,28),(22,25),(23,26),(24,27)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | ··· | 2P | 4A | 4B | 4C | ··· | 4U |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | 2+ 1+4 | C2.C25 |
kernel | C22.123C25 | C2×C4⋊D4 | C2×C22.D4 | C22.19C24 | C23⋊3D4 | C22.31C24 | C22.32C24 | C22.33C24 | C22.34C24 | D42 | D4⋊5D4 | C22.45C24 | C22.47C24 | C22.54C24 | C22.56C24 | C22 | C2 |
# reps | 1 | 1 | 1 | 1 | 3 | 1 | 3 | 3 | 2 | 2 | 6 | 2 | 2 | 2 | 2 | 4 | 2 |
Matrix representation of C22.123C25 ►in GL8(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0],[0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
C22.123C25 in GAP, Magma, Sage, TeX
C_2^2._{123}C_2^5
% in TeX
G:=Group("C2^2.123C2^5");
// GroupNames label
G:=SmallGroup(128,2266);
// by ID
G=gap.SmallGroup(128,2266);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,723,2019,570,136,1684]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=g^2=1,f^2=a,a*b=b*a,d*c*d=g*c*g=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=f*c*f^-1=b*c=c*b,e*d*e=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations